Kecerdasan buatan

Kecerdasan buatan
Dari Wikipedia Bahasa Melayu, ensiklopedia bebas.

Kecerdasan Buatan (bahasa Inggeris: Artificial Intelligence) atau lebih dikenali sebagai AI merujuk kepada mesin yang mampu untuk berfikir, menimbangkan tindakan yang akan diambil, dan mampu mengambil keputusan sepertimana yang dilakukan oleh manusia.

Terdapat beberapa cara yang digunakan untuk membina kecerdasan buatan buat masa ini. Contoh-contoh utama termasuk :
Logik Kabur : Menggunakan logik kabur untuk mencapai pilihan optimum. Berdasarkan intuisi manusia dan sangat mudah untuk direka.
Jaringan Neural (bahasa Inggeris: Neural Network): Dimodel dari interaksi antara neuron sebenar. Berkemampuan untuk belajar dari set data-data sedia ada untuk meramal output.
Pengiraan Evolusi : Menggunakan model berasaskan konsep evolusi (mutasi, perkongsian genetic, keupayaan hidup) untuk menghasilkan penyelesaian termudah untuk sesuatu masalah.

Oleh kerana bidang ini masih muda berbanding dengan cabang-cabang sains lain masih tiada jaminan cara yang mana yang akan boleh menghasilkan AI yang sebenar (true AI); AI yang mampu meniru 100% cara manusia berfikir.

————————————————————————–

20020117_news_img_01.jpg

4.2 KECERDASAN BUATAN DALAM ROBOTIK

Kecerdasan Buatan (Artificial Intelligence) dalam robotik adalah suatu algorithma (yang dipandang) cerdas yang diprogramkan ke dalam kontroler robot. Pengertian cerdas di sini sangat relatif, karena tergantung dari sisi mana sesorang memandang.

Para filsuf diketahui telah mulai ribuan tahun yang lalu mencoba untuk memahami dua pertanyaan mendasar: bagaimanakah pikiran manusia itu bekerja, dan, dapatkah yang bukan-manusia itu berpikir? (Negnevitsky, 2004). Hingga sekarang, tak satupun mampu menjawab dengan tepat dua pertanyaan ini. Pernyataan cerdas yang pada dasarnya digunakan untuk mengukur kemampuan berpikir manusia selalu menjadi perbincangan menarik karena yang melakukan penilaian cerdas atau tidak adalah juga manusia. Sementara itu, manusia tetap bercita-cita untuk menularkan �kecerdasan manusia� kepada mesin.

Dalam literatur, orang pertama yang dianggap sebagai pionir dalam mengembangkan mesin cerdas (intelligence machine) adalah Alan Turing, sorang matematikawan asal Inggris yang memulai karir saintifiknya di awal tahun 1930-an. Di tahun 1937 ia menulis paper tentang konsep mesin universal (universal machine). Kemudian, selama perang dunia ke-2 ia dikenal sebagai pemain kunci dalam penciptaan Enigma, sebuah mesin encoding milik militer Jerman. Setelah perang, Turing membuat �automatic computing engine�. Ia dikenal juga sebagai pencipta pertama program komputer untuk bermain catur, yang kemudian program ini dikembangkan dan dimainkan di komputer milik Manchester University. Karya-karyanya ini, yang kemudian dikenal sebagai Turing Machine, dewasa ini masih dapat ditemukan aplikasi-aplikasinya. Beberapa tulisannya yang berkaitan dengan prediksi perkembangan komputer di masa datang akhirnya juga ada yang terbukti. Misalnya tentang ramalannya bahwa di tahun 2000-an komputer akan mampu melakukan percakapan dengan manusia. Meski tidak ditemukan dalam paper-papernya tentang istilah �resmi�: artificial intelligence, namun para peneliti di bidang ini sepakat untuk menobatkan Turing sebagai orang pertama yang mengembangkan kecerdasan buatan.

Secara saintifik, istilah kecerdasan buatan � untuk selanjutnya disebut sebagai AI (artificial intelligence) � pertama kali diperkenalkan oleh Warren McCulloch, seorang filsuf dan ahli perobatan dari Columbia University, dan Walter Pitts, seorang matematikawan muda pada tahun 1943, (Negnevitsky, 2004). Mereka mengajukan suatu teori tentang jaringan saraf tiruan (artificial neural network, ANN) � untuk selanjutnya disebut sebagai ANN � bahwa setiap neuron dapat dipostulasikan dalam dua keadaan biner, yaitu ON dan OFF. Mereka mencoba menstimulasi model neuron ini secara teori dan eksperimen di laboratorium. Dari percobaan, telah didemonstrasikan bahwa model jaringan saraf yang mereka ajukan mempunyai kemiripan dengan mesin Turing, dan setiap fungsi perhitungan dapat dapat diselesaikan melalui jaringan neuron yang mereka modelkan.

Kendati mereka meraih sukses dalam pembuktian aplikasinya, pada akhirnya melalui eksperimen lanjut diketahui bahwa model ON-OFF pada ANN yang mereka ajukan adalah kurang tepat. Kenyataannya, neuron memiliki karakteristik yang sangat nonlinear yang tidak hanya memiliki keadaan ON-OFF saja dalam aktifitasnya. Walau demikian, McCulloch akhirnya dikenal sebagai orang kedua setelah Turing yang gigih mendalami bidang kecerdasan buatan dan rekayasa mesin cerdas. Perkembangan ANN sempat mengalami masa redup pada tahun 1970-an. Baru kemudian pada pertengahan 1980-an ide ini kembali banyak dikaji oleh para peneliti.

Sementara itu, metoda lain dalam AI yang sama terkenalnya dengan ANN adalah Fuzzy Logic (FL) � untuk selanjutnya ditulis sebagai FL. Kalau ANN didisain berdasarkan kajian cara otak biologis manusia bekerja (dari dalam), maka FL justru merupakan representasi dari cara berfikir manusia yang nampak dari sisi luar. Jika ANN dibuat berdasarkan model biologis teoritis, maka FL dibuat berdasarkan model pragmatis praktis. FL adalah representasi logika berpikir manusia yang tertuang dalam bentuk kata-kata.

Kajian saintifik pertama tentang logika berfikir manusia ini dipublikasikan oleh Lukazewicz, seorang filsuf, sekitar tahun 1930-an. Ia mengajukan beberapa representasi matematik tentang �kekaburan� (fuzziness) logika ketika manusia mengungkapkan atau menyatakan penilaian terhadap tinggi, tua dan panas (tall, old, & hot). Jika logika klasik hanya menyatakan 1 atau 0, ya atau tidak, maka ia mencoba mengembangkan pernyataan ini dengan menambahkan faktor kepercayaan (truth value) di antara 0 dan 1.

Di tahun 1965, Lotfi Zadeh, seorang profesor di University of California, Berkeley US, mempublikasikan papernya yang terkenal, �Fuzzy Sets�. Penelitian-penelitian tentang FL dan fuzzy system dalam AI yang berkembang dewasa ini hampir selalu menyebutkan paper Zadeh itulah sebagai basis pijakannya. Ia mampu menjabarkan FL dengan pernyataan matematik dan visual yang relatif mudah untuk dipahami. Karena basis kajian FL ini kental berkaitan dengan sistem kontrol (Zadeh adalah profesor di bidang teknik elektro) maka pernyataan matematiknya banyak dikembangkan dalam konteks pemrograman komputer.

Metoda AI lain yang juga berkembang adalah algorithma genetik (genetic algorithm, GA) � untuk selanjutnya disebut sebagai GA. Dalam pemrograman komputer, aplikasi GA ini dikenal sebagai pemrograman berbasis teori evolusi (evolutionary computation, EC) � untuk selanjutnya disebut sebagai EC. Konsep EC ini dipublikasikan pertama kali oleh Holland (1975). Ia mengajukan konsep pemrograman berbasis GA yang diilhami oleh teori Darwin. Intinya, alam (nature), seperti manusia, memiliki kemampuan adaptasi dan pembelajaran alami �tanpa perlu dinyatakan: apa yang harus dilakukan�. Dengan kata lain, alam memilih �kromosom yang baik� secara �buta�/alami. Seperti pada ANN, kajian GA juga pernah mengalami masa vakum sebelum akhirnya banyak peneliti memfokuskan kembali perhatiannya pada teori EC.

GA pada dasarnya terdiri dari dua macam mekanisme, yaitu encoding dan evaluation. Davis (1991) mempublikasikan papernya yang berisi tentang beberapa metoda encoding. Dari berbagai literatur diketahui bahwa tidak ada metoda encoding yang mampu menyelesaikan semua permasalahan dengan sama baiknya. Namun demikian, banyak peneliti yang menggunakan metoda bit string dalam kajian-kajian EC dewasa ini.

Aplikasi AI dalam kontrol robotik dapat diilustrasikan sebagai berikut,

image0021.gif

Penggunaan AI dalam kontroler dilakukan untuk mendapatkan sifat dinamik kontroler �secara cerdas�. Seperti telah dijelaskan di muka, secara klasik, kontrol P, I, D atau kombinasi, tidak dapat melakukan adaptasi terhadap perubahan dinamik sistem selama operasi karena parameter P, I dan D itu secara teoritis hanya mampu memberikan efek kontrol terbaik pada kondisi sistem yang sama ketika parameter tersebut di-tune. Di sinilah kemudian dikatakan bahwa kontrol klasik ini �belum cerdas� karena belum mampu mengakomodasi sifat-sifat nonlinieritas atau perubahan-perubahan dinamik, baik pada sistem robot itu sendiri maupun terhadap perubahan beban atau gangguan lingkungan.

Banyak kajian tentang bagaimana membuat P, I dan D menjadi dinamis, seperti misalnya kontrol adaptif, namun di sini hanya akan dibahas tentang rekayasa bagaimana membuat sistem kontrol bersifat �cerdas� melalui pendekatan-pendekatan AI yang populer, seperti ANN, FL dan EC atau GA.

Gambar 4.1 mengilustrasikan tentang skema AI yang digunakan secara langsung sebagai kontroler sistem robot. Dalam aplikasi lain, AI juga dapat digunakan untuk membantu proses identifikasi model dari sistem robot, model lingkungan atau gangguan, model dari tugas robot (task) seperti membuat rencana trajektori, dan sebagainya. Dalam hal ini konsep AI tidak digunakan secara langsung (direct) ke dalam kontroler, namun lebih bersifat tak langsung (indirect).
(c)2005 by Endra Pitowarno

————————————————————————–

20020117_news_img_02.jpg

Kecerdasan Buatan ?… wakkks…. !!!😮

[serius_mode=”on”]

Mendengar kata ‘kecerdasan buatan’ mungkin bagi sebagian orang akan terdengar ‘menyeramkan’, atau bagi beberapa orang lainnya akan langsung teringat film Matrix atau I-Robot. Itu tidak bisa disalahkan, karena memang kecerdasan buatan hampir selalu mempunyai konotasi fiksi ilmiah, meskipun pada kenyataannya kecerdasan buatan bukanlah suatu khayalan, tapi memang benar-benar ada dalam kehidupan kita sehari-hari dan kita juga sering menggunakannya.

Kecerdasan Buatan, yang dalam bahasa Walanda disebut sebagai Artificial Intelligence atau AI didefinisikan sebagai kecerdasan yang ditunjukkan oleh suatu entitas buatan. Sistem seperti ini umumnya dianggap komputer. Kecerdasan diciptakan dan dimasukkan ke dalam suatu mesin (komputer) agar dapat melakukan pekerjaan seperti yang dapat dilakukan manusia.

Sejarah Kecerdasan Buatan

Pada awal abad 17, René Descartes mengemukakan bahwa tubuh hewan bukanlah apa-apa melainkan hanya mesin-mesin yang rumit. Blaise Pascal menciptakan mesin penghitung digital mekanis pertama pada 1642. Pada 19, Charles Babbage dan Ada Lovelace bekerja pada mesin penghitung mekanis yang dapat diprogram.

Bertrand Russell dan Alfred North Whitehead menerbitkan Principia Mathematica, yang merombak logika formal. Warren McCulloch dan Walter Pitts menerbitkan “Kalkulus Logis Gagasan yang tetap ada dalam Aktivitas ” pada 1943 yang meletakkan pondasi untuk jaringan syaraf.

Tahun 1950-an adalah periode usaha aktif dalam AI. Program AI pertama yang bekerja ditulis pada 1951 untuk menjalankan mesin Ferranti Mark I di University of Manchester (UK): sebuah program permainan naskah yang ditulis oleh Christopher Strachey dan program permainan catur yang ditulis oleh Dietrich Prinz. John McCarthy membuat istilah “kecerdasan buatan ” pada konferensi pertama yang disediakan untuk pokok persoalan ini, pada 1956. Dia juga menemukan bahasa pemrograman Lisp. Alan Turing memperkenalkan “Turing test” sebagai sebuah cara untuk mengoperasionalkan test perilaku cerdas. Joseph Weizenbaum membangun ELIZA, sebuah chatterbot yang menerapkan psikoterapi Rogerian.

Selama tahun 1960-an dan 1970-an, Joel Moses mendemonstrasikan kekuatan pertimbangan simbolis untuk mengintegrasikan masalah di dalam program Macsyma, program berbasis pengetahuan yang sukses pertama kali dalam bidang matematika. Marvin Minsky dan Seymour Papert menerbitkan Perceptrons, yang mendemostrasikan batas jaringan syaraf sederhana dan Alain Colmerauer mengembangkan bahasa komputer Prolog. Ted Shortliffe mendemonstrasikan kekuatan sistem berbasis aturan untuk representasi pengetahuan dan inferensi dalam diagnosa dan terapi medis yang kadangkala disebut sebagai sistem pakar pertama. Hans Moravec mengembangkan kendaraan terkendali komputer pertama untuk mengatasi jalan berintang yang kusut secara mandiri.

————————————————————————–

Aplikasi Kecerdasan Buatan di Laboratorium Minyak Bumi

Ada banyak jenis kecerdasan buatan, setidaknya ada lima jenis kecerdasan buatan yang sering kita temui, yaitu :
Jaringan Syaraf Buatan (Artificial Neural Networks),
Dalam industri minyak bumi AI ini dapat digunakan untuk membuat pola waktu, misal produksi suatu sumur minyak pada waktu tertentu.

Logika Fuzzy (Fuzzy Logics),
Logika ini untuk menentukan nilai diantara dua keadaan biner (1 dan 0). Logika inilah yang saya pakai untuk identifikasi suatu minyak bumi sama (1) atau tidak (0) yang akan dibahas lebih lanjut.

Algoritma Genetik (Genetic Algorithms),
Algoritma Genetik biasanya digunakan dibidang kedokteran, misal untuk menganalisis DNA.

Robotika (Robotics),
AI ini banyak digunakan di pabrik. Biasanya dibuat untuk melakukan kegiatan otomatisasi, misal dalam PLC (Programmable Logic Control).

Permainan Komputer (Games),
AI jenis ini yang paling disukai oleh anak-anak saya, misal untuk memainkan game Age of Mythology atau Counter Strike…

Dari contoh-contoh diatas, yang akan saya bahas kali ini adalah Logika Fuzzy, yaitu untuk menentukan apakah suatu minyak bumi sama atau tidak berdasarkan hasil analisis spektrum minyak bumi menggunakan Spektrofotometer FTIR (Fourier Transform Infra Red) yang saya lakukan di Laboratorium Molekuler LEMIGAS, Jakarta selama bulan Januari – Februari 2006 yang lalu.

20020117_news_img_03.jpg

engolahan data secara digital menggunakan komputer sudah dilakukan sejak tahun 1960. Dengan adanya revolusi teknologi komputer saat ini sudah mampu melakukan pengambilan keputusan seperti manusia (human-like decisions). Pada dasarnya mesin komputer hanya mengenal bahasa biner untuk mengambil keputusan, seperti “ada (1)” dan “tidak ada (0)”, hidup dan mati, betul dan salah, sama dan beda, dan lain-lain. Ketika dihadapkan pada kondisi yang memerlukan pertimbangan subjektif yang tidak pasti, seperti “agak mirip” atau “sedikit berbeda” mesin sudah tidak dapat melakukan pengambilan keputusan lagi. Untuk itu perlu dilakukan transformasi terlebih dahulu melalui suatu metoda khusus yang disebut kecerdasan buatan (artificial intellegence).

Cara kerja kecerdasan buatan pada dasarnya meniru cara kerja syaraf manusia dalam mengambil keputusan dimana didalamnya terdapat beberapa pertimbangan subjektif berdasarkan kriteria, seperti seberapa mirip suatu minyak bumi dengan minyak bumi lainnya atau berapa perbedaan yang diperbolehkan untuk menentukan bahwa suatu minyak bumi sama atau berbeda.

Perangkat lunak yang dapat digunakan untuk membuat suatu kecerdasan buatan dapat menggunakan bahasa pemrograman atau lembar kerja (spreadsheet) seperti Lotus, Microsoft Excel, C++, Basic, dBase, Microsoft Access, Microsoft Visual Basic, Delphi dan lain-lain. Pada percobaan yang saya lakukan, metoda yang akan digunakan adalah menggunakan Logika Fuzzy pada Microsoft Visual Basic 6.

Statistika

Untuk membandingkan kemiripan identitas suatu minyak bumi secara digital perlu dilakukan perhitungan secara statistika. Dalam metoda yang dipakai untuk mengidentifikasi kemiripan suatu minyak bumi secara digital adalah dengan melihat presisi atau simpangan bakunya. Simpangan baku inilah yang menjadi variabel bebas untuk dijadikan kriteria kemiripan suatu minyak bumi.

Presisi adalah istilah yang digunakan untuk menyatakan kecocokan hasil dari pengujian / pengukuran dari suatu sampel yang diuji/diukur. Salah satu cara menentukan presisi adalah dengan jalan menghitung harga simpangan baku. Dalam analisis sidik jari minyak bumi, ukuran kesamaan suatu minyak bumi menggunakan simpangan baku relatif (Relative Standard Deviation, RSD). Cara menghitung RSD bisa kan ? Soalnya saya susah nulis rumus disini.

Pada percobaan yang dilakukan saat identifikasi sidik jari minyak bumi, perhitungan presisi digunakan ketika menentukan batasan atau kriteria kemiripan rasio hasil normalisasi serapan spektrum infra merah minyak bumi contoh terhadap terhadap rasio hasil normalisasi serapan spektrum infra merah minyak bumi pembanding. Batasan presisi ini dijadikan kriteria pertama ( K1 ) berupa variabel bebas sehingga operator bisa memilih sendiri batasan kemiripan minyak bumi.

—————————————————————————

Sains & Teknologi

25/05/07 21:34
Pakar Komputer AS Kupas “Kecerdasan Buatan”

Surabaya (ANTARA News) – Pakar komputer dari Amerika Serikat (AS), Henri J Maramis, mengupas “kecerdasan buatan” melalui jaringan syaraf tiruan atau Artificial Neural Network (ANN) di kampus STIKOM Surabaya, Jumat.

“Manusia bisa menirukan kecerdasan seperti yang ada pada otak, karena saat ini sudah banyak dikembangkan kecerdasan buatan, diantaranya dengan ANN,” ujarnya dalam seminar bertajuk `ANN dan Aplikasi Kecerdasan Buatan.`

Menurut Maramis yang merupakan Platform Development Engineering Intel Corporation AS itu, kecerdasan buatan mirip otak manusia dalam sistem komputer adalah alat otomatisasi seperti yang diterapkan pada robot.

“Untuk menciptakan kecerdasan buatan itu bisa dilakukan pada hardware maupun software. Hal itu tergantung pada penerapan apa saja yang sedang dibutuhkan,” ungkapnya.

Sistem itu, katanya, dapat mengenali dan mengidentifikasi obyek berdasarkan ciri yang bisa dikenali atau ditebak seperti wajah seseorang mulai dari mata, hidung, face (muka), dan suara pada sinyal wicara.

“Proses kerja sistem itu hampir mendekati cara kerja sistem otak manusia,” ucapnya, sambil memberi contoh gambar pola sistem kerja otak manusia yang hampir sama dengan sistem kerja ANN.

Kesamaannya, katanya, terlihat ketika ada data atau obyek maka cirinya akan dicari.

“Untuk mengetahui hal itu maka dibuatkanlah training dengan sistem neural yakni ANN dalam bentuk maping pemaparan data ciri seseorang. Jadi, aplikasi jaringan syaraf tiruan ada pada pembuatan robot,” ucapnya.

Menanggapi paparan itu, Ketua Program Studi S-1 Sistem Komputer (SK) STIKOM Surabaya, Tjio Hok Hoo ST MSc menilai pemanfaatan metode ANN itu sangat luas.

“Salah satu aplikasinya dapat diterapkan pada mata kuliah robot, karena itu saya berharap mahasiswa dapat menambah wawasan dengan mengikuti seminar tersebut,” tuturnya.(*)

Ditulis dalam Uncategorized

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

%d blogger menyukai ini: